7 research outputs found

    A Novel Variable Geometry based Planar Inductor Design for Wireless Charging Application

    Get PDF
    In this thesis, the performance, modelling and application of a planar electromagnetic coil are discussed. Due to the small size profiles and their non‐contact nature, planar coils are widely used due to their simple and basic design. The uncertain parameters have been identified and simulated using ANSYS that has been run utilising a newly developed MATLAB code. This code has made it possible to run thousands of trials without the need to manually input the various parameters for each run. This has facilitated the process of obtaining all the probable solutions within the defined range of properties. The optimum and robust design properties were then determined. The thesis discusses the experimentation and the finite element modelling (FEM) performed for developing the design of planar coils and used in wireless chargers. In addition, the thesis investigates the performance of various topologies of planar coils when they are used in wireless chargers. The ANSYS Maxwell FEM package has been used to analyse the models while varying the topologies of the coils. For this purpose, different models in FEM were constructed and then tested with topologies such as circular, square and hexagon coil configurations. The described methodology is considered as an effective way for obtaining maximum Power transfer efficiency (PTE) with a certain distance on planar coils with better performance. The explored designs studies are, namely: (1) Optimization of Planar Coil Using Multi-core, (2) planar coil with an Orthogonal Flux Guide, (3) Using the Variable Geometry in a Planar coil for an Optimised Performance by using the robust design method, (4) Design and Integration of Planar coil on wireless charger. In the first design study, the aim is to present the behaviour of a newly developed planar coil, built from a Mu-metal, via simulation. The structure consists of an excitation coil, sensing coils and three ferromagnetic cores 2 located on the top, middle and bottom sections of the coil in order to concentrate the field using the iterative optimisation technique. Magnetic materials have characteristics which allows them to influence the magnetic field in its environment. The second design study presents the optimal geometry and material selection for the planar with an Orthogonal Flux Guide. The study demonstrates the optimising of the materials and geometry of the coil that provides savings in terms of material usage as well as the employed electric current to produce an equivalent magnetic field. The third design study presents the variable geometry in a planar inductor to obtain the optimised performance. The study has provided the optimum and robust design parameters in terms of different topologies such as circular, square and hexagon coil configurations and then tested, Once the best topology is chosen based on performance. The originality of the work is evident through the randomisation of the parameters using the developed MATLAB code and the optimisation of the joint performance under defined conditions. Finally, the fourth design study presents the development of the planar coil applications. Three shapes of coils are designed and experimented to calculate the inductance and the maximum power transfer efficiency (PTW) over various spacing distances and frequency

    A robust design of an innovative shaped rebar system using a novel uncertainty model

    Get PDF
    The current paper has investigated a newly developed re-bar system by implementing uncertainty models to optimise its geometry. The study of the design parameters of this re-bar system has been carried out utilising a novel uncertainty model that has been developed at Swansea University. The importance of this invention comes from the fact that the whole process of optimisation has been automated by linking ANSYS Workbench to MATLAB via the in-house written code, Despite the fact that in the past, ANSYS APDL was linked to MATLAB, however, the APDL was very limited to only simple geometries and boundary conditions unlike the Workbench which can simulate complex features. These shortfalls have been overcome by automating the process of optimisation, identifying the key influential parameters and the possibility to carry out a huge number of trials. Moreover, the tools that have been developed can pave the way for robust optimisation of this proposed structure. The uncertainty in the design parameters of this re-bar system is of a paramount importance in order to optimise the bond strength between the newly developed rebar and the concrete matrix as well as to fully understand the behaviour of the proposed system under pull-out conditions. The interface between the rebar and the concrete matrix was considered as a ‘cohesive zone’ whereby the interfacial area is studied as a function of the bonding strength

    A robust design of an innovative shaped rebar system using a novel uncertainty model

    Get PDF
    The current paper has investigated a newly developed re-bar system by implementing uncertainty models to optimise its geometry. The study of the design parameters of this re-bar system has been carried out utilising a novel uncertainty model that has been developed at Swansea University. The importance of this invention comes from the fact that the whole process of optimisation has been automated by linking ANSYS Workbench to MATLAB via the in-house written code, Despite the fact that in the past, ANSYS APDL was linked to MATLAB, however, the APDL was very limited to only simple geometries and boundary conditions unlike the Workbench which can simulate complex features. These shortfalls have been overcome by automating the process of optimisation, identifying the key influential parameters and the possibility to carry out a huge number of trials. Moreover, the tools that have been developed can pave the way for robust optimisation of this proposed structure. The uncertainty in the design parameters of this re-bar system is of a paramount importance in order to optimise the bond strength between the newly developed rebar and the concrete matrix as well as to fully understand the behaviour of the proposed system under pull-out conditions. The interface between the rebar and the concrete matrix was considered as a ‘cohesive zone’ whereby the interfacial area is studied as a function of the bonding strength

    Enhanced tracking system based on micro inertial measurements unit to track sensorimotor responses in pigeons

    No full text
    Investigating a pigeon's perception of the earth magnetic field can require 3D monitoring of its motor responses to various stimuli. Video analysis (VTA) involves tracking a 2D image, relying on software, but the resulting data can be noisy and limited to a single field of view (one rotational angle). Our research demonstrates the validity of a novel, low-cost system based upon motion-detection using micro Inertial Measurement Unit (IMU) technology. The lightweight (<;10g) IMU unit, positioned on the pigeon's head, contains a sensor with tri-axial orthogonal accelerometers, gyroscopes, and magnetometers. The compact (20.3×12.7×3 mm) new system was programmed and calibrated, and outputs the three rotational angles (roll, pitch and yaw) simultaneously, eliminating any drift. Using existing VTA as a baseline for comparison, IMU technology was found to be able to track a pigeon's normal head movements with more precision and in 3 axes of movement
    corecore